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AN APPROXIMATE METHOD OF CALCULATING DOWNWASH BEHIND A STRAIGHET WING WITH
UNSTEADY APERIODIZ MOTION AT SUBSONIC FLIGHT SPEEDS

0. M. Panchenko

Information about downwash angles behind a wing of the specified type and
the character of their relationship to the angle of attack of the wing during
steady and unsteady motion is vital for solving problems of the efficient con-
figpration of the tail unit.

The calculation of downwash at the aircraft tail unit is a comparatively
simple problem under stationary conditions [}], Unsteady downwashes created
by a wing are more difficult to determine. i

The investigation of downwash created by a wing during harmonic vibration
was presented in a quite general way in a work [2]'. The question of investi-
gating unsteady downwashes during aperiodic motion is of equal practical interest
because one must study the motion of an object with aperiodic relationships of
the kinematic parameters and time when the aircraft vertically zoom-climbs
(breaks away), changes from one angle of attack to another, etc.

This article presents a numerical method of calculating downwash angles at
the aircraft tail unit for unsteady aperiodic motion at subsonic speeds. Only
straight, untwisted wings are examined, but it seems possible to devise a similar
method for wings of any shape with aerodynamic or geometric twist.

A coupled system of rectangular, rectilinear coordinates xyz is introduced
in which the x axis runs backward along the medial aerodynamic chord of the
wing, the z axis is to the right, along the wing span on a line perpendicular to
the plane of symmetry of the wing, and the y axis is above, perpendicular to the
xz plane. The origin of the coordinates is at E CAX (Figure 1, a). Furthermore,
we shall use a relative point-grid reference, hgving taken half the wing span

as the typical dimension:

We replace the straight wing with a system of bound vortices with axes

parallel to the z axis. These vortices traverse the pressure center, whose Waite Sectio é?
8 i

Section [

»

location we assume to be i CAX; their combined circulation is equal to true
circulation in each wing gection. A sheet of free vortices whose axes are A
parallel to the velocity of the free-stream flow if viewed from above streams -« .
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away from the wing. This sheet is unstable and turns a certain distance behind
the wing into two vortex cores (Figure 1, a) as the result of the mutual effect
of the vortices that form it. One can assume that the process of turning is
complete in the vicinity of the tail unit and that the vortex cores begin
immediately adjacent to the wing [l, 3] . Such an arbitrary vortex model sig-
nificantly simplifies solving the problem and is only valid at an adequate dis-
tance from the wing, which exists in the case of tail unit configuration on the
aircraft.

If the vortex circulation does not change in time, then the given vortex
model corresponds to steady motion. In this case the distance between the free
vortices depends on the distribution law of circulation along the wing span and
is calculated on the basis of the N. Ye. Zhukovskiy theorem, according to which
lifts determined near the wing and far behind the wing where the effect of the
bound vortices can be ignored are identical:

{
2 {1.1)
Y =2V § Tdz = pVTyl,,

whence

where 1 is wing span;

1l = vl is the distance between free vortices;
I' = f(z) is the law of distribution of velocity circulation along the wing span;
FO is velocity circulation in the plane of symmetry of the wing.

The law of circulation distribution along the span of a straight wing is
assumed to be the average between trapezoids (with respect to the base lengths,
equal to k - a value which is the reciprocal of the (wing) taper ratio and an
ellipse:

F=05T[VT—=C+1—(1—#k)¢], (1.2)

1 - for a parallel wing;

0 - for a delta wing.

According to the calculations [1] , the accepted law of circulation distri-
bution coincides with the true law with sufficient accuracy. One can express cir-

culation in the plane of symmetry of a wing FO through the lift coefficient and
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the geometrical characteristics of the wing by integrating the circulation curve:

]
v 7
Sl 2 {raz = 0,500 (3 + 3 + -;.) = 0,57yl (1,285 + 0,5k), (1.3)
whence
r. - &5 1 _ v 1 (1.4)
O T L2505 T T (1,285 + 0,5%) *

Figure 1.
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With the selected law of wing span circulation distribution, the distance
between free vortices depends solely on the geometrical characteristics of the
wing. Actually, on the basis of (1.1), (1.3), and (1.4)

11 = 0.51 (1.285 + 0.5k). (1.5)

Circulation of the bound vortices is constant in accordance with the
constant values of the angle of attack and angular velocity during steady
motion. It changes in time during unsteady motion and this can be inter-
pretted as the result of the formation of an additional rectilinear closed
vortex line with length-wise uniform circulation AT (Figure 1, b). The trans-
verse vortex with circulation - Al - is carried downstream and the distance
from it to the bound vortices constantly increases, i.e., a free vortex of a
new type - a transient free vortex - appears. Its downwash with a velocity V
in the plane formed by the free steady vortices changes the circulation of
the latter length-wise and in time.

In order to solve the problem in the case of an unsteady aperiodic motion,
we shall present the continuous process of change of the aerodynamic character-
istics of the wing in time in the form of a set of discrete changes. The kine-
matic parameter, and consequently, the aerodynamic characteristics change jump-
wise at certain moments of time and the intervals between these moments are
constant (Figure 2).

We choose the calculated moments of time (t i tn) such that they

0 tl’ e
directly precede the moments in which the kinematic parameters change jump-wise,
and thus, the circulation of the bound vortices.

At the beginning of unsteady motion (to), the circulation of vortices is
determined by steady initial values of the kinematic parameters and the vortex
system has the form shown in Figure 1, a. We shall call it a quasi-steady
vortex system.

Inasmuch as t_ is the beginning of unsteady motion, then there are no

0
transient vortices at this calculation moment and

¢ = ccal® 4 20, (1.6)

(0)

where a (0)
a

and w; are the initial values of the kinematic parameters which
correspond to the beginning of unsteady motion; the parenthetical 0 as a super-
script signifies the calculated moment of time when the value of the corres-
ponding parameter is determined:

-l -
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a = a-a
a 0’

where a_ is the zero 1lift angle;

0
.ag “'rv"A - non-dimensional pitch angular velocity (bA - mid aerodynamic chord).
<
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Figure 2.
Circulation of the bound vortices will change suddenly by a moment of time
tl, which will be accompanied by convergence of the transverse free vortex that
will recede a distance VAt from the bound vortices by this time.

The 1ift factor at a calculated moment of time tl is

o = czal) 4 cEral; {2.T)

(1)

where o
a

(1)

and w; are the values of the kinematic parameters after a single

sudden change that corresponds to a moment of time tl. i
On the one hand, the velocity induced at any point can be viewed as the ' i

1

|

result of the effect of the quasi-steady vortex system that corresponds to a /10

calculated moment of time to and the additional closed cortex system shown by

the dash line in Figure 1, b. But on the other hand, which is more convenient,
one can consider that a new quasi-steady vortex system has formed at a calculated
moment tl which has the previous law of distribution of circulation of the bound
vortices along wing span given by expression (1.2) with a new value of the 1lift
factor.

Two free vortex cores with uniform circulation Fél) & F(O) + AT, run to

0 1
infinity from the bound vortices, but then the transverse free circulation
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vortex - Arl - also has longitudinal free vortex lines that also run to infinity,
i.e., we obtain a new gquasi-steady vortex system and one horseshoe vortex with a
length (span) 11 (Figure 1, c).

The magnitude of the circulation change AT, can be calculated in the follow-

1
ing way:
— () o) . SV SV
AI‘l PO Fs" == [Cg) C(:,] 2—“ = AC‘,' -271 . (l . 8)

The above is also valid when there is not one but a whole series of transient

transverse free vortices behind the wing. At each succeeding calculated moment
of time tr’ the horseshoe vortices examined at the previous moment of time tr -1
move downstream a distance VAt without a circulation change, and moreover, a

new horseshoe vortex appears with a circulation Arr. The horseshoe vortex
corresponds to the r-th change of the quasi-steady vortex system and will cover

a distance VAt from the wing.

n changes of the guasi-steady vortex system occur and n systems of horseshoe

vortices forms by a moment of time t . At a moment of time tn, the kinematic

(n) 7 (n)
Z

parameters acquire values of aa and w , and with this

(R} — @B __ L8 n = —
& _C;a:+c:"”z =Cy-a, ’*“»‘:“ * Wz

rm — sV 1 sy
o T I (1,285 %05k 2, °
Acy, = ¢l —clr=b = c:ha, 4 C;'A;z,,-f- c:z . Au,,;

Az, = o —an=0; A, = o — o,

2
S 4
AF,. = AC”'. ﬁ .

The given vortex model makes it possible to calculate the downwash angle

behind the wing during unsteady aperiodic wing motion.

2. We shall solve a problem in the linear presentation, i.e., we shall
consider the sheet of free vortices behind the wing to be plane and the free
vortex cores, which represent the results of twisting of the vortex sheet, to
be rectilinear and lying the the x0z plane. The linear presentation signifi-
cantly simplifies the problem and does not result in large errors in the region
of low angles of attack of the wing [SJ . This region is of the greatest prac-
tical interest, for the low angles of attack of the wing are the critical ones

for the stabilizer-elevator unit (in the sense of stall probability).

s b




We shall consider that the wing moves translationally at a uniform velocity
VO, that flow braking behind the wing is absent and that the downwashes created
by the wing are constant along the tail span. We determine the projections of /13
velocity in the direction perpendicular to the free-stream flow (direction mm).
These projections are induced by elements of the vortex model at calculation
point A (&, n, 0), which is located in the plane of symmetry of the wing (Figure 3).

On the basis of a work 1 , the velocity induced by the system of bound

vortices distributed along the wing span according to a law (1.2), is:

5 P e 1
€~ e |t e PV PR R =VET.
4\’ 2
ree) A 7
//
if
W,
s - =% Wz-;( /
W,
/] Lo B2 s -
[ § 'dr?7( E
\o /4
L £ =
T
: ot
PA
Figure 3.
Substituting (1.4) in this expression, we obtain
Vo 1 1 1
w ::-—-U—— ' S
10 2zA (1,285 + 0,5k) Vet ['J'+V]_;§8T‘T (2.1)

—(A—OVTFEFF—VaTFa),

where
2= VIFTFTE (Fyme= )~ T F (e
Ju +7 (2 V1+5’+"1’) Vl+§:+.,‘aF(2' l+€’+"}3)-

u is a function of the total elliptical integrals of the first and second

orders.

The projection of velocity wlO to direction mm is

(2:2)

am == W * COS (@ — By),

-7




where -
B, = arctg .
. £
Angle R is nearly zero for aircraft whose stabilizer-elevator units are on
the fuselage. In this case
W, = W, 0 COS &.

In the region of small angles of attack of the wing

s %30 % %1p°

Velocity induced by two vortex cores with circulation To is

1 v 3
o = drw ()

where

Q§V°

Bearing in mind that ro==-7;-, we express w through coefficient Cy.

20
1 ( ¢ ) (2.5)

Wop =
=L RGNy

ction of velocity w to direction mm is

20

Wyy = W,y COS @, (2.6)
and in the region of small angles of attack is

w20 = W50 G250

Velocity induced by a free transverse vortex with circulation - Alr, is
i AII | Y

Ry ==t=—m - 1
T Ve 4wVt
where
t
b=t —Hedt,
2

Taking expression (1.8) into account, we write
Acbl V" 1 i

Wiy = — . (2.8)
Ir 27AY VE2+1,’ Vys+gf+,‘|
The projection of velocity ®p to direction mm is
Wy, = W), - COS{a — 3,) = W, COS & « €O f,, (2.9)

where 7
B, = arctg T

- B =




".---.----------------.------------—-F-'r

In the region of small angles of attack

E’nr=wl,cosﬁ,=w., = ] (2.10)
V':'f-fr,’
Velocity induced by two longitudinal vortices with circulation - Alr is
ar. €,
Wy = — — sy 1 4 ).
ve—g=r( )
Substituting expression (1.8), we have
Ac, V §
S up * | 1 =i L L
__ s (2.12)
The projection of velocity w2r to direction mm
(2.12)
The region of small angles of attack
Wz, = Wz, COSQ. (2'13)
Rake angle at a calculation point A is
e ik (2.14)
because of the effect of the vortex systems examined above, where
a 1 | e
== . e . 2 2 __
Xo= s +05mVET ["+V|‘_‘““+ai+q* Lo AR
— Vi 2 1 (l £ . (2.15)
VQ +'| ]+v2+,‘2 +V‘y——-————’+é’+r")v (2.16)
& 1 €, !
7.'=l 2 = IEE l+ —_— .
*(‘v+"’)V~’+%5+rﬁ] ‘””"[ Vet
f In the region of small angles of attack
1
&p = 573 (CuXo — Acy,Xr). (2.17)

Value XO is solely a function of the coordinates of the calculated point
and does not depend on time, and xr is a function of the coordinates of the
calculated point and value Er' With assigned wing velocity and a chosen span
of time At, value Er changes according to a linear law that multiply corresponds
to calculated moment r (r = 0, 1, 2, ..., n).

Taking the above into account, it is easy to devise a method of calculating
the downwash angle behind a wing in the region of the stabilizer-elevator unit
during unsteady aperiodic motion. Actually, by successively examining the
corresponding vortex models, we calculate the projection of velocity induced

by all bound and free vortices at each calculated moment of time to direction mm, ﬁ

-l e




and then also calculate the corresponding downwash angle.

The vortex model appears as shown in Figure 1, a at a calculated moment

of time to (r = 0) at the beginning of unsteady motion, i.e., it consists solely
of a quasi-steady vortex system. Designating the calculated moment of time with
the index in parentheses and taking into account that Acyr = 0 when r = 0, one

can write the following on the basis of (2.14)

ol () ()
0) — 10 20 e "
ecr- v, T omk Xo cos.a,
where C(o) is calculated for values of the kinematic parameters a;O) and
m;él), and X, are calculated according to formula (2.16) when r = 1;

Ac,, = ¢} —cl.

The vortex model consists of a quasi-steady vortex system and horseshoe

vortices whose number is equal to p at a calculated moment of time tp

Downwash angle /14
e = EOHERF B+ ER 4 4 EE T+ + 5 4 B
er v, =
Cos 2
= ——[cPly, — por:
2zh [c:’ Xo—Acyxp — 86, Xpy— ... — Acyyp—thmty— ... — Acyxi)= (2.17)
cos 2 p 1
= o [c‘:’)’.o— .\:; EACMZI]'
=1 j=p
In the region of small angles of attack of the wing
1 p 1
eP) = [y . N\ .
or 21:A[ v Xo ':l:: Aclu‘/.iJ' (2.18)
where
& =fla, &P,
= c(l) — .
ACF: C” ) c‘(lo)'
Ac, = c:n)__ clo—1)
The values Xpr Xpr cees xp are calculated according to formula (2.16) with
the corresponding values r = 1, 2, ..., Pp.

3. At high subsonic flight velocities, one can calculate downwash angles
behind the wing using the Prandtl-Glauert transform.

We transform the coordinate system such that

x . — . P—
xM=_V|'_M£a yM'_yO M = 2, (3.1)

- 0 - s
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where x_, ylv and z , are the coordinates of a point in transformed space which

M M
corresponds to the calculated one.
The geometrical parameters of the wing in the transformed space are:

=AY T—MI cum=c; lu=15 by = —2er ; Sy = ——.
V M M M Vicni M Vieme (3.2)

We shall take the following kinematic parameters for the transformed wing:

%

oM = VO; ar = a; sz = W,,

(here w2, ==w;v/1—-A4i), then the inductive velocities in the corresponding

points of the original and transformed spaces are linked by relationships [2]
tl'lM

Wr = ——e
Vi—m2

POy = Wy, 3 W= Wayye (3.3)

and the following relationships exist
Gu=CVT—ML a=cir )/ ToML; cyp =3, 0% +Cior (3.4)

We calculate the parameters of the transformed wing and the coordinates of
the corresponding point according to the assigned geometrical parameters of the
Wwing and the coordinates of the calculated point according to formulas (3.2) and
(3.1). Then we determine the inductive velocities in transformed space on the
basis of expressions (2.1), (2.5), (2.8), and (2.11). Knowing the inductive
velocities according to formulas (3.3) and (2.17), we find the downwash angles

behind the actual wing at the given Mach number.

i cosa (p) __.
ot [c Lom ‘L, c,M‘le {3:5)
__ Cos
=35 [c(n)xm .-2 \ Ac,‘XMI]
=1y

4. The angle of attack of the stabilizer-elevator unit in steady curvilinear
flight is determined by the following relationship:

= - e y,
“s.a, S* 4 “er = % T Aus.c.’ Ky

where o is the angle of attack of the wing;
¢ is the rigging angle of incidence of the statilizer-elevator unit;

ecr is the downwash angle caused by the wing;

eo is the downwash angle when Cy = 0

T
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Figure 4.
w, [,
Al osl s (4.2)

- the additional change of the angle of attack of the stabilizer-elevator unit
caused by turning of an aircraft with angular velocity wz.

One can calculate the angle of attack of the stabilizer-elevator unit by
the numerical method during unsteady aperiodic motion in the vertical plane
using formulas (4.1) and (4.2), having replaced the continuous processes with
discrete ones. Successively examining the vortex models that correspond to
calculated moments of time t
eig), eéi), eii) and the additional changes of the angle of attack of the

stabilizer=slevator unit 840 o, 88°27 . yi)
S.e S.e S+C

0’ tl’ oy tp, we determine the downwash angles
wes

, according to formula (2.17).
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The angle of attack of the stabilizer-elevator unit at a calculated moment

of time to is
al?) = al®) 4+ ¢ —e) —ey + Aal@ |

s.e cr s.e
where
a(ﬂ':a(.m_ao:
..(D;l
P} o . 2 B
Ag.e Ve 3™
Figures 4 - 6 show oscillograms with recordings of ! matic parameters
of aircraft motion when the aircraft is maneuvering in the vertlcal p.iar "giving
it" the elevator). The operating conditions of the engin are flight idling
(B = 0); flaps up.
r1=J4?  H=6050m J rﬂ ‘
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The coordinates of the calculated point are: & = 0.697; n = 0.093; ¢ = O.
The wing parameters are: A = 12; k = 0,384; a_ = b

0
The results of calculations made according to the suggested method are in

good agreement with the data of a flight experiment carried out in broad ranges
of angle of attack and Mach number.
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